Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 506-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225355

RESUMO

Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.


Assuntos
Antineoplásicos , Canais de Potencial de Receptor Transitório , Canais de Cátion TRPV/genética , Rutênio Vermelho/farmacologia , Microscopia Crioeletrônica , Cálcio/metabolismo
2.
Structure ; 32(2): 148-156.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141613

RESUMO

The calcium-selective TRPV5 channel activated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in calcium homeostasis. Recently, cryoelectron microscopy (cryo-EM) provided molecular details of TRPV5 modulation by exogenous and endogenous molecules. However, the details of TRPV5 inhibition by the antifungal agent econazole (ECN) remain elusive due to the low resolution of the currently available structure. In this study, we employ cryo-EM to comprehensively examine how the ECN inhibits TRPV5. By combining our structural findings with site-directed mutagenesis, calcium measurements, electrophysiology, and molecular dynamics simulations, we determined that residues F472 and L475 on the S4 helix, along with residue W495 on the S5 helix, collectively constitute the ECN-binding site. Additionally, the structure of TRPV5 in the presence of ECN and PI(4,5)P2, which does not show the bound activator, reveals a potential inhibition mechanism in which ECN competes with PI(4,5)P2, preventing the latter from binding, and ultimately pore closure.


Assuntos
Antifúngicos , Econazol , Canais de Cátion TRPV , Antifúngicos/farmacologia , Cálcio/metabolismo , Microscopia Crioeletrônica , Econazol/farmacologia , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
3.
Cell Calcium ; 106: 102620, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35834842

RESUMO

Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.


Assuntos
Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Microscopia Crioeletrônica , Mamíferos/metabolismo , Fosfatidilinositóis , Canais de Cátion TRPV/metabolismo
4.
Cell Rep ; 39(4): 110737, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476976

RESUMO

Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.


Assuntos
Cálcio , Canais de Cátion TRPV , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Microscopia Crioeletrônica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Paratireóideo , Canais de Cátion TRPV/genética
5.
Structure ; 30(1): 139-155.e5, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34453887

RESUMO

Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca2+, and the molecular evolution of TRP channels.


Assuntos
Cálcio/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Citosol/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/química
6.
J Virol ; 95(20): e0116421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346767

RESUMO

One approach to improve the utility of adeno-associated virus (AAV)-based gene therapy is to engineer the AAV capsid to (i) overcome poor transport through tissue barriers and (ii) redirect the broadly tropic AAV to disease-relevant cell types. Peptide- or protein-domain insertions into AAV surface loops can achieve both engineering goals by introducing a new interaction surface on the AAV capsid. However, we understand little about the impact of insertions on capsid structure and the extent to which engineered inserts depend on a specific capsid context to function. Here, we examine insert-capsid interactions for the engineered variant AAV9-PHP.B. The 7-amino-acid peptide insert in AAV9-PHP.B facilitates transport across the murine blood-brain barrier via binding to the receptor Ly6a. When transferred to AAV1, the engineered peptide does not bind Ly6a. Comparative structural analysis of AAV1-PHP.B and AAV9-PHP.B revealed that the inserted 7-amino-acid loop is highly flexible and has remarkably little impact on the surrounding capsid conformation. Our work demonstrates that Ly6a binding requires interactions with both the PHP.B peptide and specific residues from the AAV9 HVR VIII region. An AAV1-based vector that incorporates a larger region of AAV9-PHP.B-including the 7-amino-acid loop and adjacent HVR VIII amino acids-can bind to Ly6a and localize to brain tissue. However, unlike AAV9-PHP.B, this AAV1-based vector does not penetrate the blood-brain barrier. Here we discuss the implications for AAV capsid engineering and the transfer of engineered activities between serotypes. IMPORTANCE Targeting AAV vectors to specific cellular receptors is a promising strategy for enhancing expression in target cells or tissues while reducing off-target transgene expression. The AAV9-PHP.B/Ly6a interaction provides a model system with a robust biological readout that can be interrogated to better understand the biology of AAV vectors' interactions with target receptors. In this work, we analyzed the sequence and structural features required to successfully transfer the Ly6a receptor-binding epitope from AAV9-PHP.B to another capsid of clinical interest, AAV1. We found that AAV1- and AAV9-based vectors targeted to the same receptor exhibited different brain-transduction profiles. Our work suggests that, in addition to attachment-receptor binding, the capsid context in which this binding occurs is important for a vector's performance.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Ligação Proteica/genética , Aminoácidos/genética , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peptídeos/genética , Domínios Proteicos/genética , Transdução Genética/métodos , Transgenes/genética
7.
Methods Enzymol ; 653: 49-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099181

RESUMO

The transient receptor potential (TRP) vanilloid 2 (TRPV2) and TRP vanilloid 5 (TRPV5) cation channels play an important role in various physiological and pathophysiological processes. The heterologous expression and purification of these channels is critical for functional and structural characterization of these important proteins. Full-length rat TRPV2 and rabbit TRPV5 can both be expressed in Saccharomyces cerevisiae and affinity purified using the 1D4 epitope and antibody to yield pure, functional channels. Further, these channels can be reconstituted into lipid nanodiscs for a more functionally relevant environment. Presented here are protocols for the expression of full-length rat TRPV2 and rabbit TRPV5 in Saccharomyces cerevisiae, their affinity purification, and their reconstitution into nanodiscs for structural and functional studies.


Assuntos
Canais de Cátion TRPV , Animais , Coelhos , Ratos , Canais de Cátion TRPV/genética
8.
Cell Calcium ; 87: 102168, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004816

RESUMO

Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.


Assuntos
Ativação do Canal Iônico , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
9.
Elife ; 82019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31647410

RESUMO

Transient receptor potential vanilloid 5 (TRPV5) is a highly calcium selective ion channel that acts as the rate-limiting step of calcium reabsorption in the kidney. The lack of potent, specific modulators of TRPV5 has limited the ability to probe the contribution of TRPV5 in disease phenotypes such as hypercalcemia and nephrolithiasis. Here, we performed structure-based virtual screening (SBVS) at a previously identified TRPV5 inhibitor binding site coupled with electrophysiology screening and identified three novel inhibitors of TRPV5, one of which exhibits high affinity, and specificity for TRPV5 over other TRP channels, including its close homologue TRPV6. Cryo-electron microscopy of TRPV5 in the presence of the specific inhibitor and its parent compound revealed novel binding sites for this channel. Structural and functional analysis have allowed us to suggest a mechanism of action for the selective inhibition of TRPV5 and lay the groundwork for rational design of new classes of TRPV5 modulators.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
10.
Nat Commun ; 9(1): 4198, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305626

RESUMO

TRPV5 is a transient receptor potential channel involved in calcium reabsorption. Here we investigate the interaction of two endogenous modulators with TRPV5. Both phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and calmodulin (CaM) have been shown to directly bind to TRPV5 and activate or inactivate the channel, respectively. Using cryo-electron microscopy (cryo-EM), we determined TRPV5 structures in the presence of dioctanoyl PI(4,5)P2 and CaM. The PI(4,5)P2 structure reveals a binding site between the N-linker, S4-S5 linker and S6 helix of TRPV5. These interactions with PI(4,5)P2 induce conformational rearrangements in the lower gate, opening the channel. The CaM structure reveals two TRPV5 C-terminal peptides anchoring a single CaM molecule and that calcium inhibition is mediated through a cation-π interaction between Lys116 on the C-lobe of calcium-activated CaM and Trp583 at the intracellular gate of TRPV5. Overall, this investigation provides insight into the endogenous modulation of TRPV5, which has the potential to guide drug discovery.


Assuntos
Ativação do Canal Iônico , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Animais , Calmodulina/metabolismo , Modelos Biológicos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato , Coelhos , Relação Estrutura-Atividade , Canais de Cátion TRPV/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...